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I. INTRODUCTION 

these lectures must begin with an apology. Normally at 
schools such as this, one expects the lecturer to be a" 
acknowledged expert on the subject matter he is discussing. Here 
this is not the case. Design of hi& energy proton storage rings 
is not exactly my Porte. why am I doing this? There are several 
reasons, short oP mental illness.* 

1. I want to learn this subject myself and there is no 
better way than trying to teach it. And Ferbel didn't stop me. 

2. 'mere needs to be a broader knowledge of accelerator 
physics in the elementary-particle community. Emperimentalists at 
the storage rings find themselves especially closely coupled to 
their machine and its operation. And theorists can find 
interesting and challenging questions which lie at the Prontier of 
the very active field oP nonlinear mechanics. 

3. Straightforward extrapolation of existing acceleration 
techniques would seem to lead to very large, expensive machines. 
While we may envision one, perhaps two generations of future 
accelerators using essentially existing techniques, the question 
oP how to go beyond that is a difficult one. mere seems to be a 
growing feeling that it is not too soon to start to Pace up to the 
problem. A look at the alternative--as we do here--can only 
provide stimulation. 

*See Appendix II. 

I Lectures given at the 1982 NATO Advanced Study Institute, Lake 
George, N. Y., June 1982. 

@ Operated by Unlvsrsltlss Research Association Inc. under contract with the United States Department of Energy 
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mere is a famous plot ("Livingston Plot") of cm3 energy 
attained as a function of calendar year (Fig. 1). One sees, 
remarkably, a doubling-time of -2-3 years. Can this be 
maintained? Extrapolating into the future, there exists UNK, the 
Soviet project, talk of a VBA (very big accelerator) with 
E 5 50 TeV (for colliding beams), and even the begiynings of 
d%?ussion of a possible US machine on that energy scale. Beyond 
that lies unknown territory, and a fundamental challenge to the 
natural push to even higher energy. Ihis unknown territory of tine 
distant future is where we shall reside during these lectuses. We 
shall project ourselves into the years 2010-2020, and look at an 
utterly unimaginative scaled up pb collider of 500 TeV + 500 TeV. 
Needless to say, such a machine is clumsy (circumference > lO%n) 
and expensive (cost > 1000 Tevatrons) and must not be taken 
seriously. Nevertheless, the choice has the following advantages: 

1. By stretching present ideas to (beyond?) the breaking 
point, we learn the scaling laws for more practical machines, i.e. 
how machine parameters scale with energy. 

2. Once having grappled with such staggering energy scales, 
it is easier to interpolate back to "reasonable" (??I machines 
like the VBA. 

3. It is an interesting exercise to see whether such a 

machine, even were it economically feasible, could work, or 
whether there are intrinsic technical limits to the energy-scale 
available to the present technology. 

4. A 500 TeV proton ring is a nice pedagogical machine. In 
particular, synohrotron-radiation becomes quite important, and 
thus this proton machine shares features--and 
problems--characteristic of contemporary e+e- storage rings. 

5. me machine is so big, so remote in time, and so unlikely 
to be built that no one could be misled into thinking that I take 
any of this seriously. To repeat, this machine is not to be taken 
seriously. mis machine & not s be taken seriously. THIS - -- - 
MACHINE IS NOT TO BE TAKEN SERIOUSLY. ----- 

Our main purpose, after all, is pedagogy. In the next 
section, we shall try to outline in a rough semiquantitative way 
the big picture, i.e., we try to provide an overview of the 
material to follow. Section III is devoted to a more detailed 
discussion of linear optics and betatron motions. In Section IV 
we briefly survey question3 of errors, tolerances and nonlinear 
resonances. In Section V we provide a very sketchy parameter list 
for the 500 TeV collider, and discuss some of the uncertainities. 
Section VI discusses some of the various demands upon the 
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detection apparatus--especially the apparent inevitability of 
multiple interactions per bunch crossing. Section VII is devoted 
to concluding comments. An appendix provides a bibliography from 
which these lectures &we prepared. 

II. 3VERVIEW 

lhis section is divided into the following subsections: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

a. 

9. 

10. 

Closed orbit 

Vertical motion (betatron oscillations) 

Horizontal motion (betatron oscillations 
momentum dispersion) 

Synchrotron radiation 

Longitudinal phase space 

Synchrotron damping of the phase space 

Quantum excitation of the phase space. 

Single beam instabilities 

Luminosity 

Beam-beam effect 

1. Closed Orbit 

Get a map and dray a circle. (This is a common pastime of 
laboratory directors. ) 'l%e bending radius p is proportional to 
momentum p and inversely proportional to magnetic field B: 

p : eBp 

The conversion factor is 

(2.1) 

0.3 &V/c = 1 T-m = t0 k&m (2.2) 

(We shall often set tX=c=l.) We shall choose 1OT magnets, inasmuch 
as that has already been projected for the 20 TeV VBA. This gives 
for nominal radius p and circumference C: 

p = 170 km. 
(2.3) 

C = 1100 km. 



The actual values will be somewhat larger in order to account for 
the quadrupole magnets and straight sections. 

2. Vertical Motion 

No particle exactly follows the design orbit. The typical 
particle undergoes small oscillations about the design orbit. To 
a good approximation the vertical, horizontal, and longitudinal 
motions may be treated independently. Focussing is provided by 
quadrupole magnets; we wri.te (with z the vertical coordinate and x 
the horizontal coordinate transverse to the direction of motion) 

(implying, via Maxwell equations, Bm=+Gx, i.e. defocuss3ng in the 
horizontal plane.) 

lhe state-of-the-art maximum gradient G is -1 T/cm; we take 

G = 2T/cm. (2.5) 

Tne transverse kick a particle gets in going through a quadrupole 
magnet of length Q is roughly 

For focussing in both planes one alternates focussing and 
defocussing quadrupoles which are spaced in such a way that, on 
average, the <Is!> of particles at defocussing quads is smaller 
that the C!zI> at focussing quads. Provided this can be arranged, 
then there will be net focussing. The condition for this is, in 
order of magnitude, that the focal length f of the quads be 
comparable to their spacing L. A typical particle orbit then is 
shown in Fig. 2. 

From the above equation we see this implies 

AP 
0 ^.z.. z _ eGQz -- 

z f P P 
(2.7) 

Thus the condition for stable, strong focussing is 

eGQL - p : eBp (2.8) 

Normal economics implies that the investment in quads not be a 
large perturbation on the investment in dipole magnets 
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; r;(O.l-0.2) 

and hence 

0.1eGQ2 - p = eBp 

'Ihe spacing between F and D quads is then 

(2.9) 

(2.10) 

L" 34 
(2.11) 

and (for fixed magnet parameters) scales as E l/2 . We estimate 

Estimated Actual 

L- 20 m 30 m Fermilab TeVatron 
500 m (400 m) 2020 Machine (2.12) 

The wavelength of the betatron oscillations evidently also 
scales with L; actually the typical wave-number is -L-l. A very 
fundamental machine parameter is the tune. It is defined as the 
number of betatron oscillations per revolution 

vz : Circumference 2FP (2. --- 
Betatron wavelength 2irL L (2.13) 

We see that the tune also scales as -E 112 . We find from the rough 
estimate 

Estimated Actual 

v - 50 19.3 TeVatron 
z 350 (400) 2020 Machine (2.14) 

('Ihe discrepancy in the case of the TeVatron Is accounted for by a 
smaller value of Q/L and a larger choice of betatron wavelength 
"IOL.) 

It is useful to consider the beam as a population in phase 
space. Vertical phase-space* is just z-p, space. Provided the 

*Canonical phase space here: the definition typically used by 
accelerator physicists contains a factor y; cf Chapter III. 
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dynamics is derivable from a Hamiltonian (as is the case for 
particles moving in external electromagnetic fields--including 
time-dependent fields), the area in phase-space must be conserved, 
according to the Liouville theorem. Typically this area, as 
determined essentially by the low energy source, FS 

AZ Ap z : phase-space area = 1 MeV-cm. 

(In natural units this is -lo"%.) 

(2.15) 

We may now estimate the nominal beam size in a storage ring. 
Our previous estimate in Eqn. (2.6) relates Ap to AZ through the 
focal structure of the lattice (by lattice we mgan the array of 
magnets comprising the ring) 

*pz - eGQ AZ (2.16) 

lien 

AZ Ap - (2.17) z q .[L(Az)~I 

Only the right-hand factor is not a fixed quantity. Hence the 
nominal beam size* scales as 

A= - L-1/2 - g1/4 (2.18) 

lhe nominal transverse momentum in the beam scales as 

Ap - Elf4 (2.19) z 

Putting in the numbers gives 

TeVatron 2020 Machine 

AZ - 0.3 mm 7QJ (2.20) 

AP - 140 MeV z 30 MeV 

lhe shape of the population in phase space changes as one proceeds 
around the ring. It is typically elliptical, but the axes and 
orientation (but not area!) vary as one proceeds around the ring, 
as shown in Fig. 3. 

*This E-l'* scaling of beam size in different storage rings should 
not be confused with the change in beam-size during acceleration. 
lhere the gradient G scales with B and hence wit!! energy in order 
to keep a constant tune \J durin 7 the a$:y;eration cycle. 
lherefore during acceleration, As-E-' '; Aps"~ . 
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3. Horizontal Motion 

'Ihe description of horizontal betatron oscillations is very 
similar to vertical oscillations. Inclusion of the effect of 
curvature of the design orbit changes the tune v by = negligible 
amount. A more important effect has to do w$th dispersion: an 
off-momentum particle has a different closed orbit (cf Fig. 4). 
If the momentum exceeds the design momentum by an amount Ap (in 
the high energy limit),tbe new closed orbit will lie at larger 
radius. Write, for a typical particle 

x(s) = xEb)+x B (5) (2.21) 

where x8 is the betatron amplitude at coordinate a along the 
design orbit, and x is the correction to the radius of the closed 
orbit. In linear asproximation 

Let us estimate the nominal value of n(s). In going through a cell 
(a cell is the basic element of the lattice consisting of F quad, 
D quad and the two sets of intermediate bending magnets), the 
off-momentum particle must be bent through the same angle; hence 
it must get an extra pT kick from the quadrupoles in proportion to 
its momentum deviation Ap/p. We must have 

ApII Extra pT kick eGLh 
-- :---L 

PII Main pT kick 2eBL 

m3.s implies 

2B L 
Qlbb - T z 

(2.23) 

a value independent of machine energy. Putting in the numbers 
gives 

Estimated Actual 

m 2m TeVatron 
MS)> - (2.25) 

lm 0.7 m 2020 Machine 

For typical machine apertures of a few centimeters, a momentum 
spread Ap/p I, 1O-2-1O-3 may be accepted independent of energy. 
me actual momentum spread in the beam must be found by 
considering longitudinal phase-space. We do this in part 5. 



4. Synchrotron Radiation 

In protons storage rings the beam may be bunched as it is 
during acceleration or as in ps colliders such as TeV I, where 5's 
are in short supply. In other cases the beam may be unbunched 
("coasting") as 
In e+e- machines, 

in the CERN ISR (or as in the ISABELLE design). 
the beams are necessarily bunched, because the 

energy loss from synchrotron radiation must be compensated by an 
RF accelerating system. In our 5GO TeV machine, protons also emit 
a sign&ficant amount of synchrotron radiation. me handbook 
formula for the energy loss per turn is (with W-c-1) 

Energy loss/revolution E UO - 3p (2.26) 

With our parameters, this implies 

"0 - 3 GeV/turn (2.27) 

'Ihis radiation is emitted in a broad spectrum of photon 
energies, 
given by 

but the typical photon energy or critical energy E, is 

-23 - G’E 
0 

3 

Ec 
'"0 m 

pm 
(2.28) 

For the 2020 machine, this is 

Ec - 300 keV (2.29) 

This gives the typical number of photons emitted per turn as 

"0 - 1 Pnotons/revolution - jj- 
c 137 

At 500 TeV, we get 

Emitted photons/revolution - 4~10~ (2.31) 

Tnus a coasting proton would lose =l% of its energy in 2000 
revolutions. Inasmuch as the revolution frequency is 250 Hz, 2000 
turns is only 8 sec. A coasting beam is not possible. An RF 
system must be provided. 
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5. Longitudinal Pnase Space 

To define longitudinal coordinates, we may use the energy 
deviation E (or momentum deviation Ap=e) and the distance As from 
a reference particle at the center of the bunch (or equivalently 
the arrival-time delay C-T) of the particle at a given point of 
observation). As one might expect, E and T (or Ap and As) are 
canonically conjugate variables. Somewhere around the ring RF 
cavities must be placed to provide the acceleration. A particle 
with energy E entering the cavity at time 'I leaves tine cavity with 
energy E+V(T), where by definition this defines the RF voltage 
V(T). lhe RF voltage must be synchronous with the particle motion 
around the machine. 'lhus V(T) must be periodic 

V(T) 2 v CT+ hc) 
0 

where 

MO fC = -2-+ = revolution frequency (2.33) 

and 

h : integer Z harmonic number (2.34) 

Typically (but not always) V(r) is sinusoidal, and we shall assume 
it to be true here: 

V(T) = V. sin (hwOr+$O) (2.35) 

The choice of RF frequency is determined in large part by 
practical considerations beyond the scope of these lectures. At 
Fermilab, the RF frequency is -50 Mhz; at CERN it is -200 Mnz. 
me higher the frequency, the less bulky the cavities, and we 
shall provisionally pick (rather arbitrarily*) a frequency of 
500 m-la. This gives the harmonic number 

h - 2x106 (2.36) 

me synchronous particle (r=O) Will gain energy V. sin Go per 
turn. This must match the energy loss Uo: 

*In retrospect, I think this is a mistake. Lower frequency seems 
preferable. 
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(2.37) 

We may now write down equations of motion for E and T, which 
may be functions of time. lhe time variation iS assumed to be 
slow compared to the revolution frequency. men we have 

de "0 "IJo 
-r 
dt ~;i CV, sin(h[tioT+$O)-Uo- aE E] (2.38) 

(The last term ultimately must be included. It provides damping; 
here we temporarily ignore it.) 

Even in the absence of RF, the variable T will change with 
time if the particle has a momentum error. lhis occurs because 
the revolution frequency depends upon momentum. We write 

(2.39) 

where the "dilation factor" or "momentum-compaction" n is not the 
same n(s) as introduced in connection with the dispersion. 
However this n (sometimes called CXp) is related to n(s). At high 
energy,* evidently 

*At lower energy, there is another contribution to n (of opposite 
sign) coming from the change in velocity with momentum. Since 

and Av/v L y-'CAP/P), we get 

n = 
Q(S)> l-1 1 

P 
7-'-v' YT 

CF.11 

CF.21 

At the value y=yT, or transition energy, n changes sign and 
longitudinal motion becomes more nontrivial. This creates some 
complication during acceleration in lower energy machines. From 
Eqns (2.8), (2.13), and (2.241, we may see that yTzv. For the 
2020 machine, injection energy will be well above transition. 
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(2.40) 

(2.41) 

For the 2020 machine, our rough estimate gives, 

n - 6~10-~ (2.42) 

Because of the dispersion, an off-energy particle will, in absence 
of other effects, change its position As, (or time T) relative to 
the reference particle. We have 

dr -r+,-T(E 
dt= p E 

(2.43) 

lhis, together with Eqns. (2.37) and (2.381, leads to the equation 
of motion 

- - - g U$ Vo~sin(hwoT+$O)-sin~o~ d2T 

dt2 - 
(2.44) 

For I$~:! (no synchrotron radiation) this is the equation of a 
pendulum, with T playing the role of an angle ("synchrotron 
phase"). For small amplitudes there is stability; for large 
amplitudes there is not, and T on average increases linearly with - 
time. 

For nonvanishing $,, there is again phase-stability for small 
amplitudes. For large amplitudes T increases (on average) 
quadratically with time, and consequently E increases linearly 
with time, implying eventual loss of the particle. 

In the limit of small T, Eqn (2.44) is just an oscillator 
equation, and the angular frequency Q.s (synchrotron frequency) is 

(2.45) 

For our 500 TeV machine, we get (choosing Vo-5 GeV) for tine 
frequency of synchrotron oscillations, 
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(2.46) 

justifying a posteriori our assumption of slow variation of T with 
time. 

It is again important to view all this in the longitudinal 
phase space. Considering first the case $1~70, we see that in E-T 
space the small amplitude orbits are approximately circular (or 
elliptical), centered at +=O, +27r/hw +4nhw (Fig. 5). Very 
large amplitude orbits are straight lin$!i E = cogit. In between is 
a special orbit, the separatrix, which comprises the boundary 
between oscillatory and non-oscillatory motion (it corresponds to 
the pendulum oscillation with +180° excursion in angle). me 
equation for the separatrix is easily worked out, especially if 
one remembers the facts of life about pendula. me region in 
phase space of oscillatory motion which is enclosed by the 
separatrix is called, for obscure historical reasons, an RF 
bucket. lhe dimensions of the bucket are 

At : h+ (full width) 
0 

(2.48) 

lhe typioal phase-space area occupied by high energy proton beams 
is determined by the injectors 

AE AT - l-2 ev-see (2.49) 

For the 2020 RF system, the nominal bucket area (still neglecting 
the synchrotron radiation) is much larger. We have 

AE AT - 
69j' 

h3/2w 111/2 
(2.50) 

0 

Putting in the numbers with Ar=2xlO-'set gives, 

AE 
lU=X 

- f 150 GeV (2.51) 

and 
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If one puts in a bunch with the nominal, small longitudinal phase 
space, it will evidently not occupy the full bucket area. Its 
dimensions Will typically be in proportion to the bucket 
dimensions; hence (in the absence of synchrotron radiation 
effects) 

i 
Phase-space area \ l/2 

AE - 150 GeV 
Bucket area 

I 
AEmax - (150-300)"2 - lo GeV 

AT - lo-" sec. 

mis would imply a bunch length 

As -' cAr - 3 cm. 

(2.53) 

(2.54) 

If RF acceleration is present and 4 f0, the bucket size 
decreases and the bucket shape becomes siml ar to a fish, as shown .P 
in Fig. 6. However, the nominal order of magnitude estimates 
which we made will not be changed. An accurat discussion of this 
can be found in many places in the literature. 5 

We note that at energies less than 500 TeV, the synchrotron 
radiation loss becomes quite small and the RF system is suitable 
for acceleration of the beam from injection energy C-70 TeV??). 
me time At required for acceleration to top energy is 

At - 500 TeV 
250 Hm3 GeV - 10 minutes (2.55) 

which is reasonable. 

To get an idea of the scale of this RF system, we note that 
in the LEP design at maximum energy the synchrotron loss per turn 
is -2.4 GeV. me RF system (350 Mhz) is 1.6 km long and consumes 
-100 MW. For the 2020 machine we therefore need -3 km of RF with 
nominal power consumption (without considering future improvements 
such as superconducting RF) of -200 MW. On the scale of this 
machine, these requirements are quite modest. 



14 

6. Radiation Damping 

Emission of synchrotron radiation leads to damping of tine 
pha%? space population of the beam. Consider first the vertical 
degrees of freedom. Synchrotron radiation is emitted along the 
direction of motion of the particle (to accuracy of order 
y"=(m/E)). Tnus when a photon is emitted, the transverse momentum 
is diminished by the same pementage as the longitudinal momentum. 
But only the loss in longitudinal momentum is compensated by the 
RF system. Hence the transverse momentum (better, phase-space 
area) diminishes in accordance with the rate of energy loss from 
synchrotron radiation. 

“0 w. 
Up’*z) & (*pzAz) = c -%I z O( 1 

or 

(ApaAz), = (*p,*s)O e -t/r, 

with the damping time T" given by 

E 271 T 2 -- v "0 w. 

(2.56) 

(2.57) 

(2.58) 

It is the time required for a particle to emit an amount of 
synchrotron-radiation energy equal to its own energy. For the 
2020 machine, we get 

T” - 20 min. (2.59) 

Notice that the scaling law is 

T -L-- 
” ,: El2 

with B the magnetic field in the ring. 

Horizontal motion is in principle more complicated because 
momentum dispersion and betatron oscillations are both damped, hub 
are in fact coupled. But the complications are inconsequential, 
and to good approximation 
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r, = -% (2.61) 

'Ihe momentum spread is also damped. ?his can be readily seen 
by returning to Eqn. (2.38) and keeping the damping-term (obtained 
by expanding the energy loss due to synchrotron radiation through 
first order in a.) Since 

(EO+d4 
"o- R 

we have, to good approximation* 

(2.62) 

a”o “0 --EU- 
ac 

EO 
(2.63) 

Reconstruction of the oscillator equation, keeping track of 
the damping term, leads for small amplitudes to 

d2T 4"0 wO dT A:- 
dt2 

S-lZT + - - - 
EO 2i1 dt (2.64) 

and thus 

T(t) = 'c ei'st evt"s (2.65) 
0 

with 

1 2n EO 
T --- 

s = Fh - w. 2" 
0 

7. Quantum Excitation 

At this stage we would infer that with time the beam 
phase-space would shrink to a point, with a characteristic time 
equal to the time required for a particle to radiate its energy 
into synchrotron photons. mat is too good to be true and other 
effects must intervene. lhe dominant effect (for beams of 
sufficiently low intensity) arises from the same source, namely 
the quantum nature of the emitted radiation. Quantum fluctuations 
produce noise; the particle energy random-walks away from the mean 

* 
Strictly speaking, R is a function of a. Rut this contribution is 
easily shown for our big machine to be small because of the 
smallness of <n(s)>. 
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AE-v'?E 
Y c 

(2.67) 

where n is the number of photons emitted during a damping period 
and EC (gqn. 2.28) is the typical photon energy. 

ny - /g 
c 

or* 

1IE= c 
E F e 

For the 2020 machine this means 

g - e - 2.5~10-~ 

(2.68) 

(2.69) 

(2.70) 

and a horizontal spread 

x E 
-+.. 2OP (2.71) 

lhese energy fluctuations drive horizontal betatron oscillations; 

73 
cant neither dominate xe nor be negligible with respect to xe: 

xf? - xE (2.72) 

A detailed discussion can be found in Sands. 6 

So far the vertical motion is not affected by quantum 
excitation. While there is some vertical spread caused by the 
angular distribution of emitted photons, this is negligible in 
comparison to vertical spread induced by higher order effects 
(skew quadrupoles, nonlinear elements such as sextupole and 
octupole fields; noise, etc.) lhese are not easy (certainly not 
here) to quantify. Empirically one finds in e+e- machines beam 
heights -l-10% of the beam width 

AZ - (.Ol-.l)Ax (2.73) 

*lhis implies that AWE - E/o. For electron machines, design 
considerations force p-E2 in order to minimize the sum of RF 
costs (c( E4/p) and ring costs (a p). Hence AWE is roughly 
machine-independent. 
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If true for the 2020 machine, this would imply 

More important than the actual size is the distribution in z 
or x. The noisy nature of the quantum-fluctuation~eohanism 
suggests a gaussian distribution. However, this driving 
mechanism, when coupled with the effects of nonlin ar forces 
(beam-beam interaction, resonances, etc.), turns out to' produce 
much longer (roughly exponential) tails. Formulation of 
diffusion-equations for the phase-space population is necessary to 
treat this question. Of course, the magnitude of the tail of the 
distribution at the machine aperture determines the rate of beam 
loss. 

In proton machines at present energies, where synchrotron 
radiation is negligible, the tail of the transverse density 
distribution is much sharper. lhe dynamics which determines the 
nature of this distribution is obscure and has to do with 
nonlinearities in the optical properties of the lattice, the 
beam-beam interaction, the number and strength of nearby 
resonances, and sources of noise (power-supply ripple, RF noise, 
and gas scattering). 

a. Collective (Single-Beam) Instabilities 

There exist a large class of instabilities which occur 
because of the interaction of a single beam with its environment. 
lhe electromagnetic field of the beam induces currents in the 
walls of the vacuum chamber, which in turn create fields which 
drive the beam. If the beam intensity is high enough and the 
phase relation of the response to Vne source is %orrect,Y' there 
may be positive feedback and creation of instability. 

lhere are both transverse and longitudinal instabilities. 
Some instabilities depend on coupling to resonant structures of 
high Q (eg RF cavities). Others are present even in a 
non-resonant environment. We shall not recite here the catalogue 
of instabilities. But the most serious ones are those with high 
frequency, where a single bunch executes complex internal motion 
of nontrivial "multipolarity," rather than rigid motion. 

Rigid motion of an entire bunch may be monitored, and there 
is the opportunity to cure the instability via feedback. Tne 
high-frequency %iorowave" instability must be cured by other 
means. me most serious such instability for the 2020 machine 
appears to be longitudinal and we briefly describe this one, in 
order to give some idea of how these are handled. 
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Consider first of all a coasting beam which has a small 
periodic density modulation as function of longitudinal coordinate 
s. (We ignore the transverse degrees of freedom.) ‘ke image 
charge and wall current will likewise be modulated, and exert a 
force back on the beam which is periodic with the same frequency. 
We consider* this frequency U to be a multiple n of the revolution 
frequency Wo. 'lben the beam finds itself in a RF potential V(W) 
which may, if the phase relations are appropriate, tend to bunch 
the beam, thereby increasing the image currents, which in turn 
leads to increased bunching and ultimate instability. lhe induced 
RF voltage V(W) will be linearly related to the perturbing current 
i(w) (due to the linearity of Maxwell's equations) 

V(W) = i(W)Z,, (WI (2.75) 

'ibis relation defines the (complex) impedance, a quantity which 
oan be calculated by solving Maxwell's equations for the 
electromagnetic fields prtduced in the vacuum chamber by the 
perturbed circulating beam. 

For instability to ensue, V(w) must be large enough to 
capture the beam, i.e. to bunch the beam and contain the beam 
phase-space witnin the (self-consistently induced) RF buckets. 
'ihe bucket height is given by Eqn (2.48), with the harmonic number 
given by n: 

(AE) ,=$i 2 _ EV (2.76) 

Tnus large momentum spread and/or low currents are necess$ry to 
avoid the instability. (This is the Keil-Schnell criterion ): 

“n .i< 
” 

nE & 2 
i > E (2.77) 

For the "microwave" instability, the important wavelengths are 
smaller than the bunch length (As). lhe impedance on the other 
hand decreases as the frequency exceeds cd-', where d is the 
beam-pipe diameter. lhen in evaluating Eqn (2.77), in this case, 
we must use the peak, or instantaneous current in the bunch, 
inasmuch as the instability is locally generated and would be 

*Ifs this is not the case the ?'inducedv RF system can be thought of 
as rotating around the machine at the difference frequency. 
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equally important were t'ne ring filled with bunches. That is, 
even though the Keil-Schnell criterion was derive 
beams, it can be applied to the bunched beam case. 

q. for coasting 

We shall not estimate the impedance ZII /n at all. It gets 
many contributions from miscellaneous elements around the ring 
(vacuum bellows, position monitors, RF cavities, etc.), especially 
those with discontinuities in radius or shape, and is reputed to 
be difficult to compute reliably. In any case ZII is roughly 
proportional to circumference. But for a given frequency w, the 
harmonic number n is also proportional to circumference. mus 
Z,, /n is an intensive quantity, roughly independent of energy. 
Empirically, for present machines 

zlI 
n 2 l-10 ohms (2.78) 

at the relevant wavelength of order a few on. 

We may now attempt some numbers. We choose Zll /n-3 ohms, and 
take two cases. One is that of "short bunches," where the 
synchrotron damping has reduced the momentum spread and bunch 
length. lbis will, as we shall see, severely limit the number of 
particles per bucket. 'lhe opposite extreme is to fill the bucket 
(more or less; we take -25%) thereby maximizing AE and As, and 
minimizing the peak current. lhe parameters we choose are 

Short Bunch Long Bunch 

Bunch length As 3 cm. 30 cm. 
Energy spread AE +lO GeV 275 GeV (2.79) 

me" the number N of particles per bunch is limited by the 
Keil-Schnell criterion as follows. 

short bunch 

long bunch (2.80) 

For the "natural*' short bunch this is quite a severe limitation; 
intensities of 3x10" to lO"/bunch are the norm in present 
machines. To see what is optimal, however, one must look with 
care at the questions of luminosity and of beam-beam tune shift. 

9. Luminosity 

Let us put one bunch of p's and one of i;ls into the machine. 
lhe.lminosityY per crossing (for head-on collisions and ignoring 
density variations across the bunch) is 
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(2.81) 

where A is the area of the bunches and N the number of particles 
per bunch (Luminosity x cross-section : no. of events). We get, 
for the limiting cases of short and long bunch we considered in 
the previous section, and using just the nominal area of the beams 
in the machine, 

N 

Snort Bunch Long Bunch 

3x108 2x10" 

Area -2l.lx201.1 7ow7o!J 

2 (per crossing) 2*1O23 cmm2 8x1026 cm-2 (2.82) 

In the case of the long bunch, we have assumed a size as 
determined by the betatron motion. Typically the dispersion 
function n(s) is designed to vanish at the collision point, so 
that the horizontal size at the collision region is controlled 
only by the betatron phase space. 

lhe case of the "long bunch" would lead to a quite 
re,pectable luminosity already, when one considers that the 
revolution frequency is 250 Hz, that the beam can be focussed more 
strongly at the collision point than at typical points around the 
ring, and that we can contemplate having a large number of bunches 
stored in the ring. However, there is yet another limitation to 
consider. This is imposed by the beam-beam interaction. Before 
any serious optimization of luminosity can be attempted, the 
beam-beam limit must be taken into account. 

10. Beam-beam limit 

me proton beam, through which the antiprotons necessarily 
pass, is a (nonlinear) focussing element for the antiprotons (and 
vice versa). Let us estimate the focussing strength. To simplify 
the discussion, approximate the proton beam by a uniform slab of 
charge of half-width Ax and half-height Az<<Ax. Consider only the 
vertical force, which for this "slab" geometry is dominant. men 
the vertical impulse received by an antiproton with impact 
parameter z is easily worked out (most easily in the rest frame of 
the proton bunch). 

0 
2 

Ap, z elds ET & = s ( z_<Az) 
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We may compare this kick to that given by a lattice 
quadrupole. This is (cf. Eqn. (2.8) 

(Ap,jquad - eGllz - F z 

lhe (Ap 1 from this quad changes the betatron tune Us by an amount 
hv WhicT? is O(1). Thus we get* 

(Av) Bemqbem = ‘““;$yy-bem - & . L 
z quad P (2.85) 

lhe (linear) tune shift can be compensated by retuning 
quadrupoles. However, some of the beam (and after many turns, 
almost all of the particles) have impact parameters z>Az and 
suffer a smaller A.u than the core. lhus Av is better regarded as 
a tune spread. As we discuss later, in order to maintain 
stability the tune of the machine cannot be an integer or integer 
plus a vulgar fraction p/q (p,q small integers). In practice the 
tune must be controlled to a few percent of an integer. For e+e- 
machines, the empirical (and to some extent theoretical 
Av is S-03 for PEP/PETRA/CESR and i.06 for SPEAR/DORIS. 

],limit on 

For proton rings at present-day energies it is believed that 
the maximum allowed Av probably is smaller tnnan that, owing to the 
lack of synchrotron-radiation damping as a stabilizing** 
influence. Recent experienceS3at the CERN pp collider indicate 
stable operation at Au - 2-3x10 , in accordance with theoretical 
estimates. 

*We have assumed the focussing strength at the collision point is 
typical of that around the ring. 'his is typically not the case. 
Very strong local focussing is used to increase the luminosity. 
If the "focal length" is smaller, then L should be replaced by 
the local focal length (more precisely the g-function at the 
collision point, to be discussed in the next section). However, 
then the area A=AzAx should be replaced by the (smaller) local 
value as well. It turns out that A is also proportional to L, so 
that tine beam-beam tune shift is independent of the local 
focussing strength. 

**After a damping time the electron beam forgets its past. 
Protons at present energies, like elephants, never forget. But 
for electrons the radiation excitation introduces more noise into 
the phase-space, a destabilizing influence. 
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then 

2? 

Our 2020 machine is an intermediate case; we assume AV<.O! is 
limit (good to a factor 3). Putting in some rough numbers 
gives, for single bunches and our previous parameters, 

? 

"beam-beam - 
.06 "short" beam 

0.3 "longtt beam 
(2.86) 

This is unacceptable, and we must optimize the luminosity 
taking simultaneously into account the synchrotron damping, the 
limit on single-beam current from the microwave instability, and 
the limit from beam-beam tune shift. 

We note here that the beam-beam limit, Eqn. (2.83), implies a 
maximum value for the transverse current density. To increase 
luminosity it is advantageous to make the beam bigger. In 
particular, dividing Eqn. (2.80) by (2.83), we get 

($@i.&f (per crossing) (2.87) 

lhus for fixed AU and p, our options are 

1) Increase N, at the same time somehow increasing the area 
A. 

a Decrease L, i.e. make the focussing at the collision 
point as strong as possible. 

We shall not pursue these issues further here, but will wait 
until we have built up more formalism. Suffice it to say that we 
do not yet have 3 reliable luminosity estimate. 

III. OPTICS 

1. Vertical Motion;~ Hill's Equation 

In this section we shall discuss in more detail how one 
describes the optics of the machine. We begin as before with 
vertical motion, and write down the basic equations: 

c _ dz z =TE 
(3.1) 

da' 
z--=- k(s)2 (3.2) 

Here 



P 
z *~Z=o 

P z 
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(3.3) 

the derivative of the vertical coordinate is used as a momentum 
variable rather than p,. Thus phase space is conventionally taken 
to be z-z' space. 

lhe focussing function k(s) is (to first approximation), for 
an ideal alternating gradient lattice, nonvanishing only within 
quadrupole magnets, where 

k(s) E ? F = f $ (3.4) 

lhe two first-order equations combine to produce an 
oscillator-like equation. 

z *' + k(s)2 = 0 (3.5) 

This Is known as Hill's equation. lhe focussing function is 
periodic, k(s) : k(s+C), with C the orbit circumference. But 
general solutions, of course, need not be periodic. - 

Were k a constant, we would have oscillatory motion. 

z-z o sin (t + @,I (3.6) 

(3.7) 

with 

B:k (3.8) 

a constant. The set of all orbits of constant amplitude would 
form in z,z' ,a phase space a tube (or torus if z is closed back 
upon itself: z+C=2), with individual orbits following helical 
paths around the tube, as shown in Fig. 7. 

Provided stable solutions exist, the general solution to 
Hill's equation has a similar form. It is conventionally written 

z = &GZsin +(a) (3.9) 

where the amplitude function B(s) is periodic and depends only 
upon the lattice, i.e. the focussing function k(s). lhe constant 
E, called the Courant invariant, determines the normalization of 
the amplitude. Ihe phase function @(a) is determined by g(s) as 
follows 
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(3.10) 

'Ihis latter relation can be obtained by substituting the 
'~solution~~, Eqn (3.9) into Hill's equation, and demanding the 
coefficient of coa $I vanish. l The vanishing of the coefficient of 
sin C$ then produces a nonlinear second order differential equation 
for g that we shall not bother to write down. mere are other 
convenient ways of obtaining the $-function, which we shall 
describe later on. 

me amplitude function B(s) is a moat important function; it 
determines the (linear) optical properties of the lattice, and 
essential properties of the vertical motion. In particular the 
tune v (the number of betatron oscillations per revolution) now 
has a precise definition 

v=&& (3.11) 

2. Linear Maps 

We may obtain more insight into the motion and determine B(s) 
as well by going back to the Hamiltonian form of two first-order 
equations for z and z*. In this form the content of the Liouville 
theorem is more directly seen. 

First order linear equations can (like the Schrodinger 
equation) be formally integrated. Define 

‘z(s) S(s) = 1 1 (3.12) 
‘(s) 

and relate [(s+ds) to c(s). From Eqns (3.1) and (3.2) 

<(s+ds) = [; ;)+(;rS, ,$dj S(s) Z (l+Tds)S(s) (3.13) 

*me constant of integration one gets is set to zero. This cleans 
up the equation for B. 
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and hence c(s') can be obtained from S(s) by multiplying by a 
product of matrices each of which depend only on the lattice. For 
sufficiently small As we have, schematically 

S(s') = M(s',s)S(s) q [JI (l+~A~)l<(s) (3.14) 
As 

[A veteran particle theorist will write . 

M(s’,s) : P exp .fz ds"T(s") 

where P is the path ordering operator.] 

(3.15) 

me matrix M(s’,s) is known as the transport matrix. Because 
a lattice is composed of a sequence of basic elements and because 
transport matrices satisfy the group property 

M(s" ,s’)M(s’,s) : M(s",s) (3.16) 

we need only know the matrices for the basic elements. For 
example 

lhin focussing quadrupolea 
ML: 

(For defocussing, f-c-f) 

M: 
Bending magnet or straight 

section of length L. 

Here tne focal length is 

1 eG& Gt 

T=-T-=Bp 

(3.17) 

(3.18) 

Then 5 can be propagated around the ring by multiplying these 2x2 
matrices together. Note that the determinant of the matrix for a 
basic element is unity; hence so also is a product of them 

det M(s*,s) = 1 

[This is directly related to the Liouville theorem.] 

(3.19) 

*For accuracy, one must go beyond the thin lens approximation. 
For our purposes this is hardly necessary. The reader is invited 
to work out the correction using the basic elements given here. 
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Now consider the matrix for a complete circuit around the 
ring. After N revolutions the coordinate is 

c(N) I MN$O) 

If we diagonalize M 

(3.20) 

SIG-' = 

( 

Xl O 

0 
x2 

we must have 

x,x2 = 1 

and for stability 

x, = e'@ 

(3.21) 

(3.22) 

(3-23) 

(Otherwise EN - AN max grows exponentially with N) 

Tr M(s+C,s) = Tr SMS -1 = 2 cosl$ < 2 (3.24) 

is sufficient to ensure stability. It takes little imagination to 
guess that 4 is essentially the tune 

$ = 2av (3.25) 

[We leave the demonstration to the reader.1 We may also obtain 
B(s) from the transport matrix M(s+C~,s). Recall, from Eqn. (3.91, 
along with one differentiation, 

C= 
+ 5 v$$ sin@ (9) (3.26) 

Now choose the initial phase such that @(s)=O and initial 
amplitude E=B. lhen 

c,(s) = y 
0 

(3.27) 

After one revolution 
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“0s 2nV + 2 sin 27rV (3.28) 

But from the definition of the transport matrix and Eqn. (3.27) 

C(s+C) = M12 
i 1 M22 

(3.29) 

and thus the upper right-hand element of M(s+C,s) determines 
directly B(s). This clearly provides a convenient numerical 
procedure. Using the constraints on Tr M and det M, the general 
form of M(s+C,s) is 

M = cos 2~ + J sin 2nV = e 
2lW.J 

(3-30) 

with 

8 

Note that J2=-1. 

We repeat: 

To obtain the tune U and the B-function B(s): 

Compute the transport matrix for a complete revolution. men 

Tr M(s+C,s) = 2 cos 21~V 

M ,2 : B(s) sin Zi7V (3.32) 
--.--.._--_ _.~ 

lhe reader should not delude himself into thinking that this 
sketch provides a strict derivation of the results we have 
presented. However, the raw material for providing the missing 
links has been given. - 
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We have already described the nature of the motion in the 
case of a constant focussing function k(s). For the general case 

. of stable motion there is in z,z , s space again an "invariant 
torus* on which all orbits with a given value of Courant-invariant 
E lie; these orbits again spiral around the torus. At any given 
s, the cross-section 2 of t e torus is an ellipse, as can be seen . 3 
from Eqn (3.26) and cos +sln ~1 

2 c 

E = & + B(s) (2’ - E- z)2 
28 

(3.33) 

The area of the ellipse is independent of s (Liouville again!) 
and is ?IE. At extrema of B(s) we have an erect ellipse; in between 
extrema it is skew (cf. Fig. 8). Note the g-function does not 
describe the orbit of a given particle but rather the envelope of 
many particle orbits. 

For a beam, i.e. a phase space population, the typical value 
of the phase space area of the particles in the beam is called the 
emittance of the beam (careful! 
other times 20): 

sometimes what is quoted is lo; 

emittance : <s> q 17 <x2X2' J 5' (3.34) 

Tne maximum value of emittance which survives in the machine is 
called admittance or aperture. 

4. FODO Lattice 

We now compute g(s) for a FODO lattice. This is, as already 
described in the previous section, a regular sequence of focussing 
and defocussing quads separated by bending magnets. We first 
compute the transfer matrix for a cell (the basic element of the 
lattice consisting of one F quad, one D quad, and the intervening 
magnets). We again assume the quads are separated by distance L 
and start the transfer matrix from the center of an F quad, where 
by symmetry we expect an extremum of the &function. lhen first 
calculate [cf. Eqn. (3.1713 

VT0 VT: (’ if :) (i ‘;) (i :) 
= 1 

L 
'+TF L 

L L 
-2 i 1-z 

(3.35) 



Next calculate fiOi/% which is easy; just change f +-f. Then 
multiply the two togetherso get 

flOD0fl.l';: 't':;) 
(3.36) 

By symmetry the &function is periodic over a cell as well as 
over the entire machine. Therefore we can define a phase advance 
per cell ).I such that 

2~ = v ncells (3.37) 

and use the transport matrix for a cell rather than for the whole 
machine to obtain the &function g,,, at the focussing quad. 
According to our recipe 

cos L2 p : 1 - - 
2f2 

5 max sin 1-I = 2L(l + k.) 

or 
L 

5 
max 

=2f/+f I- 
1 -27 

(3.38) 

(3.39) 

Note that, 
and 

as expected, B'=O. Also by replacing F +D we get Bmin 

5 L 
max 1+-e 1 + sin g 

-: 
5 

= 
min 1 - k 1 - sin 2f !i 

We may observe that for stability we must have 

(3.40) 

L2<2 
2f2 

(3.41) 

OP 

f >$ (3.42) 

lhat is, weOmust not overfocus. In practice a phase advance per 
cell of -90 (sometimes a little less) 
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(3.43) 

is chosen. We shall take p=n/2 for definiteness. Note also that, 
because 

--eGa 1 

f- P 

the above condition is 

eGllL -2 
P 

(3.45) 

which is essentially what we saw in the previous section 
(cf.Eqn.(2.8)). Note also that 

<8> - 2f - I@L (3.46) 

so that the fuzzy parameter L used in the previous section should 
be replaced by the basic optical parameter g(s), which measures 
the local betatron wavelength according to the relation, 
Eqn.(3.10): 

A4 = h (3.47) 

'Be &function in between F and D magnets can be obtained by the 
same technique but by employing a different starting point. mis 
is left as an exercise. 

5. Horizontal motion and dispersion 

lhe betatron motion in the horizontal plane, as mentioned in 
the previous section, is almost the same as for the vertical 
plane. Inclusion of the curvature correction in Hill's equation 
gives 

d2x - 
ds2 

+ k(s)x +x = 0 
P2 

(3.48) 

i.e. bending magnets produce a little focussing. (This should be 
put into the matrix 0 for a bending magnet.) 
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'Ihe dispersion function n(s) describing the closed orbit 
deviation xE for off-momentum particles 

x E = q(s) LQ 5 rl(s)nq P (3.49) 

may now be calculated. To first order, contributions to the 
dispersion function, which evidently is periodic over a cell, come 
only from bending magnets (which are analogous to prisms). A 
magnet of length L contributes deviations 
(cf. Fig. 1 

6x and 6x' given by 

L2 
6X - L 

2P2 
2P 

m 0 

: 6p = 

6x L L 

on G A 

7 
P 

(3.50) 

Let 

(3.51) 

be the orbit deviation. he change in orbit deviation over a cell 
is then expressed by 

[(s+~L) = M(s+~L,s)<(s) + /???I + /?oDA (3.52) 

where the last two inhomogeneous terms are contributed by the 
magnets in the cell, and the first term propagates the orbit error 
through the cell. By symmetry 

S(s+2L) = C(s) 5 5 max 

and we get 

(3.53) 

5 max = & GII+oD)A (3.54) 

This determines the maximum value of Q(S). Evaluation of the right 
hand side is done via the following steps: 

1. Explicity work out the numerator. 

2. Determine eigenvectors of M. 

3. Expand the numerator in terms of these eigenvectors. 

4. Evaluate cm,,. 
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One finds 

%ax = 
L2 

2 g (' psin 2 
+ i sin $1 

with Tlptin obtained, as usual by changing +1/2 to -l/2 in the 
numera or. Putting in numbers for p-~/2 gives 

%I 
L2 

ax = 2-7 ii %in : 1.3 g 
(3.56) 

From Eqn. (3.45) (for p=~r1/2) 

Hence, for 90" phase advance/cell 

(3.57) 

(3.58) 

which is, as advertised, independent of energy, and of order 
meters. 

A more systematic way of treating dispersion 12 is to enlarge 
the transport matrix to a 3x3 matrix which acts upon x,x-, and o 

n' 
6. Chromaticity 

Not only does the closed orbit change for off-momentum 
particles but also the focal properties of the lattice - in 
particular the tune v. me optical analogue is chromatic 
aberration. lhus the chromaticitx 5 is defined as the percent 
change in tune per percent change in momentum 

- 2 & : 6V 

v P 
ccl 

II (3.59) 

lhe natural chromaticity, which is the contribution to 5 of 
the normal lattice, can be computed directly. From Eqn. (3.38). 

L2 co3 p 2 1 - - 
2f2 

and 

(3.60) 
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(3.61) 

one finds easily that 

6v.&kr:2 
V !J l-i ta” 

i&f (3.62) 

For 00' phase advance, this gives 

5 I -1.3 (3.63) 

This is too large and, as it turns out, also of the wrong sign. 
Single-beam instabilities are sensitive to chromaticity, and 
stability requires a positive value. 'lhe chromaticity is adjusted 
by adding sextupole magnets around the ring. Evidently the 
sextupole strength (per cell) needed to do this scales with the 
quadrupole strength, independent of energy. 

IV. ERRORS AND NONLINEAR RESONANCES 

With such a big machine, we might expect it to be impossible 
to align. We briefly investigate here the effect of errors and 
nonlinearities. 

1. Closed orbit error. 

Suppose one magnet at position s provides the wrong bending 
field by an amount AB. lhe normal ben !?I angle AB in the magnet is 

'Ihen the angle change 6x' caused by the error is 

,j./ = !% A(j - AB As -- 
B B P 

(4.1) 

(4.2) 

Therefore the perturbed closed orbit is just a betatron 
oscillation which has a kink in slope of magnitude 6x' located at 
so. We need therefore to simply locate a phase point c(s,) such 
that x(so+C)=x(so) and x'(so+C)=~x'+x'(sD). Write 

x(so)=/~cos a0 (4.3) 

men 

x(so+C) = JB2cos ($o+2nv) (4.4) 
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implying $or-7rV. We now calculate Sx': 

and 

(4.5) 

x'(so+C) = &~sin($0+2~v) + 5 x(so+C) 

Subtraction gives us the amplitude @ 

(4.6) 

6x' = x'(so+C) - x’(s,) = 2 - sinrrv = g As 
4 BP 

and thus the solution for x (Green's function!) is 

(4.7) 

x(s) = 
~5(sMb,Y AB 

2 sin VV B 0 
(4.8) 

Note that (1) the amplitude is largest if the field error is 
located in a region of large 8, and that (2) the amplitude blows 
up if V is an integer. lhis is the simplest kind of resonance. 
If on each revolution the betatron &ase at so is the same, the 
error kick will always increase the amplitude in the same way; one 
has just a resonantly driven oscillator. 

'lhe total contribution to the closed orbit is obtained, via 
superposition, by adding the contributions of the individual 
magnet errors. If they are random, then the rms error is 

<x2, I B(s)B N rms 
8 sin 2 mv P2 

magnet 

The scaling law is 

Ax- B.B.g, 
0 P B V 

For fixed magnet type and magnet quality, and for V-J?, 
is indep ndent 

-5 
of energy. Choosing il "7m, N-1.4x10 , 

AB/B-10 we get <Ax>" 5mm. Correcti%igelements are a 
but t‘ne p;oblem (on paper) does not worsen with energy. 

(4.9) 

(4.10) 

we find Ax 
V-400, and 
necessity, 

Not all errors need be random. If fourier components (in 
longitudinal coordinates) of the error field peak near the 
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betatron wavelength, one can get enhancements. Ihis is in fact 
one way of correcting closed orbit errors; one analyzes the 
Fourier spectrum of the particle orbit deviations, and applies 

(dipole) fields having the dominant Fourier 

2. Tune Snifts 

Suppose a quadrupole at so has the wrong field. lhen the 
tune will be modified. To estimate this, we look at the 
modification to the transport matrix 

We need only recalculate the trace 

TrM + TrM + R quad 6k l M12 

= 2 cos 2~ + fi(s,) aquad 6k'sinZnW 

(4.11) 

(4.12) 

and thus 

Av = + i%sO)Gk 

(4.13) 

Tne last factor takes into account the fact that for the 2020 
machine (unlike present machines) what we call a focussing element 
F consists of a sequence of quadrupole magnets, not an individual 
magnet. Again, assuming random errors and averaging around the 
ring gives 

2 

<Av> - 1 max +B 

IIn 2 

Sine e 

1 eG G 

==F- =Bp 

(4.14) 

(4.151 

we have 



<AU> - 
gaquad -Ad G 

P * CT YRquad 0 

P.gain, with 

8-E 

P 
Jx;-m 

we find a tune-shift independent of energy. 
for the 2020 machine gives 

<A.,)> - 3<g> 

3. Miscellaneous Errors 
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(4.16) 

(4.17) 

Putting in numbers 

(4.18) 

Other such errors can be treated similarly. ,4A short 
compendium can be found in a contribution by King for ICFA 
studies of a 20 TeV machine. 'Ihey include 

1. Vertical plane misalignments of dipoles. 

2. Quadrupole position errors. 

3. Quadrupole tilts. 

4. Stray magnetic fields at injection. 

5. Gradient errors in dipole magnets. 

Examination of the formulae again shows that none of them 
scale with energy in such a way that the problems worsen at higher 
energy. Typically the number of sources scale linearly with 
energy, giving a net deviation growing as v'%'fi. me betatron 
wavelength also scales as fi, and magnetic rigidity (a good word!) 
as E. 'Ihe net deviation then scales as (m'/E - 1. 

4. Tune Shift from Machine Nonlinearities 

lhe magnetic fields in the lattice are not ideal. Higher 
order nonlinear terms are present and must be kept under control. 
To begin, write, for corrections from dipole magnets, 

ABx = BC(l + Abnxn) (4.19) 
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mere are also cross terms in x and a (which are typically more 
important!), but we come back to those later. The modification to 
Hill's equation is 

d2x AB(s) -ye+ k(s)x z -E 
ds BP 

; 5 bJs)x" (4.20) 

We have a change in focussing strength 

Ak - 2 6 bnxn-' (4.21) 

which is, as one 
amplitudes. 

could have guessed, most important for large 

Eqn. (4.13): 
To estimate the change in tune, we may borrow 

AV = $ B(s)Ak (4.22) 

and obtain 

Au = - & 4ds B(s);bJs)x(s)"-' (4.23) 

The analysis then proceeds as before. Assuming uncorrelated 
contributions from the different magnets~ (even more dangerous 
here??), and taking a single term in the sum, 

<(A"n)'> : ' ' <b2><8 x 
,6a2p2 Nmag Lmag n 

2 2n-2, (4.24) 

Recalling t'nat <x~>+&>~, we get, rou&ly 

II-1 
1 

v+A"~)~>~~ - (4.25) 

me scaling with energy follows, not surprisingly, the pattern we 
have seen before, 7 nd for higher moments (on paper) even improves, 
inasmuch as %-E-l 2. me lower values of n, say 3 and 4, are 
contributed by sextupole and octopole fields, and are relatively 
controllable, inasmuch as such fields are deliberately included in 
the lattice to control chromaticity and help tame single-beam 
collective instabilities. 

Bigher orders in n are in less control. 



lhe tune shifts (spreads) are very sensitive to large values 
of 6, putting an especially high premium on field quality in the 
neighborhood of focussing quadrupoles. 

5. Resonances - 

We have already seen that it is unwise to choose an integer 
for the machine tune inasmuch as dipole field errors drive 
resonances. Field errors of higher multipolarity drive higher 
order resonances at tune values, as we shall see, equal to an 
integer plus a vulgar fraction p/q, with p and q small integers. 
After the integer resonances, the simplest case is that of linear 
coupling resonances. 'lhese are contributed by tilted (skew) 
quadrupoles, for example. 

d*x - + kx(s)x = Gk(s)s 
ds* 

d*z 
- + ks(s)z = Gk(s)x 
ds* 

Extension of the transfer-matrix method (to 4x4 matrixes) h dies 
this case quite easily and exactly. 'Ihe analysis is pretty. % It 
turns out that if 

ux + vz : n 

with n integer, there exists instability and emittance growth. 
For 

wx - vz : n (4.28) 

there also exists resonance. Energy is transferred back and forth 
between horizontal and vertical motion in a manner similar to 
coupled degenerate pendula. But the betatron amplitudes remain 
bounded. 

Nonlinear resonance phenomena are very rich and interesting. 
Tne dynamics of a single isolated nonlinear resonance can be 
worked through in a reasonably systematic way. To go beyond that 
point is to enter the active research field of ZOth-century 
nonlinear mechanics. Here we shall only partially treat tne case 
of a single nonlinear resonance. One begins with the perturbed 
Hill's equation 



d*z - + k(s)2 : - ; Ab@z" 
ds2 

(4.29) 

and change variables (VFloquet transformation") 

do=;& __ (0<$<2x around the ring) 

39 

(4.30) 

lhis smooths out the betatron motion into that of a harmonic 
oscillator: 

d*v 2 -+vv:- 
d6* 

b,(s Iv" 

I -; '; A;' cos p$)vn 

The nonlinear term on the right-hand side is periodic in @ and 
drives the resonance. me above equation can be obtained from the 
Hamiltonian (think of 0 as time!) 

2 v*v* H++F+$ 
,(n) ($J) ncl 

n+l (4.332) 

me conventional method of solution starts with this Hamiltonian 
and performs successive canonical transformations until the 
dominant component of the nonlinearity (for given tune choice) is 
isolated. me remaining piece of the nonlinear Hamiltonian is 
then thrown away and the solution obtained by additional canonical 
transformations. 

Nowadays the techniques of Hamiltonian mechanics are more 
familiar to many of us in the context of the quantum theory. We 
shall use that language here to motivate the procedure. me 
nonlinear term contains, in 
operators a and a+, 

terms+ c&creation and destruction 
terms of order (a ) inducing transitions 

with A'&(n+l)~. 
fourier components 

me driving term P.,,(@i contains only integer 
exp +ip$. If the energy p of a quantum 
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delivered by the driving term equals the excitation energy AE of 
the oscill .ator, there will be resonance 

p = (n+l)v (4.33) 

or 

V=J-- 
n+l = vulgar fraction (4.34) 

Note that n is determined by the multipolarity of the magnetic 
field: 

n = 1 quadrupole 
2 sextupole 
3 octupo1e 

. 

. . 

while the resonance is drive? (essentially)* by the p-m 
(circumferential) harmonic of the nonl.inear force around the ring. 

For coupled resonances, the Hamiltonian contains terms which 
have the form 

H c I gi+l ,m+l (4.35) 

hese contain terms -~a+~n+l~a+~m+l, 
argument gives the resonancg condieion 

which by the previous 

p = (n+l)vz + (m+l)Vx (4.36) 

mere can also be difference 
sum resonances, driven by terms 
when the s oscillator 
simultaneously de-excited. Tnis is a relitively inefficient way 
to pump energy into the betatron-oscillators, and we infer that, 
in general, s resonances will be more dangerous than difference - 
resonances. 

To get some more detailed insight into the nature of these 
resonances, we return to the uncoupled case of a pure sextupole 
term (n=2) in the oscillator calculation Eqn. (4.31). We expect 

*The irregularity of the focussing structure (i.e. B- function) 
also contributes to the driving term. 
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that the following steps will set up the simplified calculation. 

1. lhe resonance will be important when v:N+1/3 or N+2/3, N 
integer, implying p=3N+l or p=3N+2. 

2. We shall find the equation of motion for the creation 
operator a*, which we define as usual 

v = & (aemiw@ + a*eiw+) 

P = iq(aewiw@ _ .neim$) (4.37) 

where we 
(Remember! 

anticipate the need to remove some "time"- ependence 
"time" is $) from a* by putting in the eiw 8 factor. 

The frequency w will be chosen later; it will be approximately - 
but not precisely - equal to the natural frequency v. 

3. On proportional t;z e[f@t$and side, we keep only the term 
, because that is the only one which will 

approximately match the frequencies and produce the resonance 
condition, Eqn. (4.33). 

Then the equation of motion for a* is easily found to be 

da* - = -i(“~)a*-A2e-iP~ei3w~a2 
d$ 

We choose 

w = 5 E Vres 

(4.38) 

(4.39) 

to rid the equation of oscillatory factors and finally obtain 

da* 
G- = -i(W-Vres)a*-A2a2 (4.40) 

Now complex a-space is essentially resealed phase-space. We see 
the following features: 

1. The phase-space trajectories have a 3-fold symmetry; if 
a($) is a solution, so also is a($) exp (2niM/3) with M integer. 
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(For the generic n!h nonlinear term, this clearly generalizes to 
an (n+l) -fold symmetry. 

2. Tnere exist fixed points, i.e. "time-independent" 
solutions of da/d@=O. lhey satisfy 

and are at a distance from the origin given by 

Ial = p3 
( / 

(4.42) 

That is, they are far away unless 

Av ,: A2 (4.43) 

which is, roughly, the condition on tune shift obtained earlier 
(Eqn.4.23). 

3. On resonance, when Av=O, the fixed points converge to the 
origin. One may then find simple radial solutions of the equation 
of motion. Writing 

a($) = p(@)ei” 

with the phase c( kept constant, we get 

(4.44) 

dp s = A2e3icrp2 (4.45) 

For self consistency, we need do/d+ to be real so that we must 
have 

.3icr = +1 (4.46) 

E?h ;;~;r;$s~;u~;;fls f"s CL, corresponding to rays emanating 
,... Motion on three of the rays will 

be outward from the origin, and inward on the other three. In 
between these rays 
trajectories (Fig. 9a). 

it is easy to guess the phase-space 
me rays are clearly separatrices. [For 

nth-order resonance there are 2(n+l) such separatrices.] 

4. Moving back off-resonance, the phase-space trajectories 
near the origin will be circular, oscillator like. Far from the 
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origin, well beyond the fixed points, the small change in tune 
will not affect the motions we deduced for the on-resonance case. 
Thus, in between there must be other separatrices linking the 
fixed-points. lhe finijl picture is as in Fig. gb. For n=2 the 
separatrices turn out to be strai&t lines as shown. his is not 
true for higher n, althou& the basic geography -with periodicity 
n+l instead of 3 - is the same as we have described. 

Often there will be other focussing forces of higher 
multipolarity present. For example if there is a zero-harmonic 
octupole component which dominates the sextupole component at 
large amplitudes the outer separatrices will become closed, 
creating "islands of stability" (Fig. 14). This is a common 
pattern for the phase-space structure. 

In the case of coupling resonances, a similar analysis can be 
made. For a generic interaction term 

H' - (cosp~)s n+lxm+l _ ,-ip$ (as) + n+l(ax+)m+' 

the frequencies 41s and wx must satisfy 

P = (n+l)w,+(m+l)wx (4.48) 

in analogy to Eqn. (4.39). It is convenient to also choose 

w -v 
2i-E 

Wx-V 

n+l 
z-2 

m+l (4.49) 

in order to obtain fixed-points in the U-dimensional a -a 
space. (These "fixed"-points actually are one-dimension% ;a:?:?? 
We shall, however, not go further into describing the structure of 
this phase space. 

One should not get the idea that we have even begun to cover 
the fascinating topic of nonlinear resonances. me phase space 
structure is extremely rich - in fact fractal. Some idea of this 
richness can be gleaned by looking at computer- generated iterated 
maps - now nonlinear - for16even simple nonlinear motions in 
*-dimensional phase space. One starts with a few particles at 
some initial Points (x,(s,),x~(s,)), compute (including nonlinear 
fyqs ) their positions (xi(s +NC) 
10 - revolutions and then pl&ts'all ihe 

x; ( sO+NC) after N=1,2,... 

(Fig. 11). 
resultant phase points 
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In regions of stability one sees reasonably deterministic 
orbits. Near separatrices one sees "stochastic layers" emanating 
from the unstable fixed points. If one recalls the nature of the 
most elementary unstable fixed point - a pendulum balanced at 
maximum amplitude - one may appreciate that when a phase 
finds itself near 

point 
an unstable fixed point its future is vitally 

dependent on the details of small perturbations in the present and 
tends toward indeterminacy. 

But within chaos lies order. Upon looking with a magnifying glass 
at stochastic regions, one finds more islands of stability with 
their own fixed points and stochastic layers, g infinitum.* And 
ail this structure is found in a one (space) dimen ional system. 
Essential complications occur in higher dimensions. 1% 

We may summarize all these anxious estimates of instabilities 
in terms of a tune diagram (Fig.12). lhe lines show danger zones 
from low order resonances. The operating point (really a small 
area) must be judiciously chosen to avoid the important 
resonances. lhere are exceptions: Nonlinear 

~%a,b~~~%?" Also we may 

resonances, 
timulated, are used to slowly extract a beam from an 

need the resonances in the 2020 
machine to blow ui the beam to keep a manageable current density 
(low beam-beam tune shift) at high current. 

V. MACHINE PARAMETERS 

'ihe main parameters of the 2020 machine are shown in Table I. 
We have included, for comparison, various numbers from the CERN 
PS, Fermilab Tevatron, and the 20 TeV ICFA machine (VBA). We now 
comment in turn on the choice of parameters in those cases where 
it is not obvious from what has been directly presented. Beware! 
None of the numbers are consistent to more than 20%. 

1. 'lhe magnet lengths are chosen as 7m, which is the 
state-of-the-art. lhe 10T field for dipoles and 2T/cm for quads 
is not state-of-the-art, but is assumed by ICFA 
state-of-the-art for the 20 TeV machine. Therefore we use it': 
lhe choice of tune is somewhat arbitrary, and is based on the 
fraction of circumference in quadrupoles, R/L, chosen to be lo%, 
somewhat larger tnan the custom, but not the maximum which might 
be contemplated on economic grounds. With E/L=O. 1, Eqn. (3.45) 
yields for the half-cell length L 

*Not infinitum! Quantum mechanics soon intervenes. 
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0 

45 

(5.1) 

Dividing into the circumference gives tine number of cells, and 
thereby the tune, which is l/4 the number of cells. 
betatron phase advance/cell is go'.) 

(Remember, 

To obtain the maximum and minimum values of g in the normal 
lattice, we use Eqn. (3.38) directly. Likewise, the nominal value 
of the dispersion (or off-momentum) function <n(s)>, and "dilation 
factor" n is found from Eqns. (3.56) and (2.41). 

2. Collision Region 

lhus far, we have not inserted straight sections Into the regular 
lattice of the machlne. hese are required for beam injection, 
beam abort, and RF, as well as for the collision regions. 

a. g and 8' should be matched at the input and output of the 
straight section in order that the optics of the rest of the 
machine not be disturbed. This typically implies an integer 
contribution of the insertion to the tune. 

b. It is deemed desirable to design the insertion region so 
that the dispersion function n(s) in the straight section 
vanishes. lhe most straightforward way to change n in some region 
is to add an opposed pair of dipole doublets as shown in 
Fig. (131. But this is unnecessarily elaborate; it suffices to 
decrease (by a factor "2) the bending strength of the dipoles in 
the cells adjacent to the straight sections to accomplish the 
goal. 

In the collision straight-sections, one naturally wants to 
focus the beams especially strongly, i.e. reduce the g-function 
at the collision point to a small value. One (or more) pairs (or 
triplets) of strong, large-aperture quadrupole magnets are 
utilized for this purpose. 'Ihe rough behavior of the B-function 
in the straight section is shown in Fig. (14). The g-function in 
a drift space has a quadratic behavior: 

B(s’+ll) = P+!z2 
B* (5.2) 

where 11 is the distance from the collision point s*. [To see this 
observe that the transport matrix for one revolution starting a 
distance .@, from s* is 
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M(s*+.t+C,s*+!L) : (5.3) 

Calculation of the upper rignt hand element produces Eqn. (5.2)j.l 

Thus the maximum value of g, which we call 6, occurs in the 
neighborhood of the final focussing quadrupoles, is roughly 

B+$; 
(L straight -9d 

<i3> (5.4) 

where <3> is a typical 
in the normal lattice. 

L straight -G 

one has 

Ilf - 4z 

(or slightly less-than-typical) value of g 
For 6*<< <g>, L straight >>9. , and 

(5.5) 

The maximum allowed B is determined by aperture limitations 
of the quad, focal power (the length of the doublet must be less 
than II*), and chromaticity. Inspection of Eqns. (3.62) and (3.40) 
show that, in the very-strong focussing limit of phase advance of 
-1600/cell, a single doublet in the lattice contributes an amount 
6g to chromaticity of 

(5.6) 

With 4 collision regions (and two quad pairs per straight section) 
we should have 

(5.7) 

in order that the natural chromatioity not be dominated by 
interaction-region quads. lhus we guess 



a R 
- - max 5500 
$1 - B . mm 

Guessing 

ii : 10km 
$* = 20 m 
<5> t 500 m 

gives 

L straight 
= 2.5 km 

(5.8) 

(5.10) 

'lhese estimates are very superficial, and may be quite wrong. 
on how to do better may be found in discussions by 

In some machines, one must also ensure, because of the 
behavior, Eqn. (5.21, of B near the collision point, that the 
bunch length not exceed g*. lhis is evidently not a problem in the 
2020 machine. 

3. RF System and Synchrotron Radiation 

Ihese have already been discussed, and we have nothing much 
to add here. Because of the problems with the collective, 
single-beam instabilities one might want to increasd bunch length 
by lowering the RF frequency. This would allow, according to the 
Keil-Schnell criterion, Eqn. (2.771, more protons per bunch. For 
a more-or-less uniformly filled RF bucket, the bunch length and 
hence the number of protons in the bucket is inversely 
proportional to the RF frequency. 

4. Injection 

Superconducting magnets exhibit a kind of hysteresis 
associated with persistent currents generated in the 
superconducting wire. lhis limits the injection field to >lO-20% 
of the peak field. lhus a reasonable injection energy is '-70 TeV. 
lhis implies that the 2020 machine would probably be third 
generation: 1TeV -+ 1OTeV + 70TeV + 500TeV. At injection energy 
beam emittance will be larger by a factor "7, and beam size by a 
factor -2-3, than at peak energy. Tnus, unlike what we have 
done, tolerances are typically most severe for injection 
conditions. lhis will not affect our estimates of how tolerances 
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scale with energy, inasmuch as the ratio of injection to peak 
energjj is, to first order, independent of machine. 

We have neither addressed the question of how beam is 
injected nor how it is aborted, i.e. extracted in no more than one 
turn if trouble is sensed. 
(kickers); 

This is done with pulsed magnets 
I see no epic problems in doing tnat, althou& in the 

case of aborts the demands on beam dump design may be heavy. 

5. Beam Parameters 

he emittance of the FNAL machine at transition (-20GeV) is 
c- n mm-mra -1. lhe quoted numbers for the 2020 machine are scaled 
up by the E factor implied by Liouville's theorem. lhey should 
be considered as rou@ly 2u estimates, unless otherwise stated. 
lhis incudes the longitudinal emittance. 

We should not take seriously the beam parameters after 
synchrotron- radiation damping. 
intensity beams. 

mey are only relevant for 197 
We shall instead assume bunches of 5x10 

particles which are "artificially" maintained at an optimal 
transverse size by, say, occasionally tuning onto an appropriate 
resonance to blow up the beam. Likewise we assume the RF buckets 
can be uniformly filled either by manipulations at injection 
and/or by using the microwave instability itself. 

6. Limits from Single-Beam Instability 

We shall assume that the principal limitation on bunch 
intensity comes from the longitudinal "microwave" instability 
which we have already treated in Section 11.7. We shall take the 
"long bunch" case, witn rms bunch length (5 ~10 cm. 
an rms momentum spread oforder o 

lhis produces 
- E 30 GeVSor o = o /p ~6xlO-~. 

'Ihe Keil-Schnell criterion, EqR. (2.771, for nthes& parameters 

,"Zt':F 3;; 
- 3 ohms and AP = 2op -60 GeV, a limiting peak 
?; 100 ampere. With 

'peak z /&is 

this implies 

(5.11) 

N < 5 x 10” (5.12) 

As shown in the Supplement, we may hope to put one bunch per 
betatron wavelen th ?; into the mazhine; this would imply -400 
bunches, or -2x10 p and E stored in the ring. lhis in turn 
requires an improvement in 
lo'-lOa over existing sources. 

antiproton production by a factor 
[If necessary, this problem could 



be overcome by building -100 sources; this would not peturb 
greatly the total cost of the machine!!] 

7. Luminostty 

'Ihe formulae for luminosity and beam-beam tune-shift differ 
si@tly from the rough estimates we have previously used, if one 
considers gaussian beams. We use (compare with Eqn. (2.81)) 

bz<axx) (5.13) 

where 

N 
P 

= No. of protons per bunch 

"b : No. of bunches in ring 

a 
x9= 

= rms beam size at collision point (5.14) 

me vertical beam-beam tune shift per crossing AU is, instead of 
Eqn. (2.851, 

Au I 
“NQ 

2nEp":u; (5.15) 

We shall assume that the beams are separated except in the four 
collision regions. This is discussed in the Supplement; 
electrostatic deflectors are used to separate the beams except at 
collision points. We shall furthermore assume that the beam-beam 
effects from different collision regions add incoherently, so that 
Au - JIj' Jii: 'Ihere is little theoretical justification 
for thi%~"&%%?& it is not too bad empirically. 

'Ike strategy is therefore fixed: 

a) N - is determined by the limit on beam current from 
l&$itudinal microwave instability. 

b) 8: is minimized via lattice-optics considerations. 

c) u*u* is determined by the condition (good to factor 
?i!T) 

Av = .OI (5.16) 

It will be larger than the natural value from synchrotron damping. 
Putting numbers into Eqn. (5.15) gives 
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-6 2 
0~0~=8xlO cm (5.17) 

Assuming U* = 20: for definiteness gives for emittance 
X 

E _ (20z))2 

n ---p- -20 pm-urad (5.18) 

This is only slightly less than what exists immediately after 
injection and acceleration. We must assume that the beam can be 
artificially excited and the size controlled. 

This problem exists already in e+e- storage rings. It has 
proved difficult to blow up the transverse phase space by external 
means; the synchrotron damping dominates. However, in those cases 
the damping time is of order milliseconds instead of a fraction of 
an hour, so the problem for the 2020 machine may not be as severe. 
Mechanisms for enlarging the phase space might be tuning onto weak 
betatron resonances or adding RF noise. 

d) With nb of order V, as determined by the scheme for 
electrostatic separation of the beams, we may now directly 
estimate the luminosity. We obtain 

9 = 1O33 cmw2 set-l (5.19) 

and per crossing 

.p = 1O28 em-2/crossing (5.20) 

There is a lot of uncertainly in this estimate. A tune shift per 
crossing of .005 may be too big by a fagtor 2-3. This influences 
linearly the luminosity. Putting 5x10 particles in a short 
bunch may be overoptimistic. me diminution in luminosity goes 
linearly with N (provided the beam-size at the collision point can 
be re-optimized). 

But perhaps the most severe constraint comes from detection 
problems. There are, with this luminosity, many interactions per 
crossing. mese cannot be resolved by existing detection 
techniques, and thus the physics opportunities are constrained. 
These problems are discussed in the next section. 

VI. DETECTION PROBLEMS 

A traditional design requirement for colliders is that there 
be no more than one interaction per bunch crossing. This implies, 
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for a total cross-section (wi hin factor 2) -lO-25 cm2, a 
luminosity per crossing -10 

25 -ii cm . Furthermore, we have seen that 
the bunch spacing for a pp collider is (optimistically!) - one 
bunch per betatron wavelength. Since the betatron wavelength 
increases with energy this implies (using these ground rules) that 
the net luminosity is - 

ze: ,025 vg (6.1) 

For the 2020 machine with V-400 and w0/2n=250 see-', this gives 

.5E- 10300m-2sec-1 (6.2) 

which is hardly adequate for investigation of hard collisions with 
subprocess cross-sections (at the energy scale appropriate to this 
machine (-10-300 TeV), which may be estimated (just from 
dimensional analysis) to be 

0s: (6.3) 

i.e. 

0 5 (4xlO-36 to 4x10-3gom2) (6.4) 

If one allows multiple collisions per crossing,~ one cannot 
expect charged particle tracking or-at these energies - even muon 
identification to be viable. One is left with electromagnetic and 
hadron calorimetry. In the case of calorimetry, a certain amount 
of pileup can be tolerated without losing too much information. 
The situation is described in more detail in the Supplement. Here 
we summarize a few of the salient points. First of all, we can 
only hope to see In principle calorimeter very hi& PT jets.not much 
resolution for energies above 1 Tev is of a problem, 
althou& the clean isolation of a hadronic jet in the presence of 
QCD gluon bremsstrshlung may be a considerable nuisance. We now 
estimate the pileup underneath an observed high-p, jet. First of 
all we assume the jet is contained within 0.1 stera ian. 'me 
distribution of energy into 0.1 steradian (at 90 i3' ems) is 
empirically bounded above by an exponential 

E dN c---- - 
dET ' <ET> e <ET> (6.5) 

with <E > an increasing function of total cm3 energy. 
of d<E >Tdn versus energy is shown in Fig. 15. 

me value 

103 T$V might be as large as 
me value at /T - 

"5 GeV/steradian. men 1000 
collisions per bunch crossing could put, 0" average, 500 GeV into 
each calorimeter element subtending 0.1 steradian. me 
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fluctuations about the average, however, are bounded above by a 
Poisson distribution. 

(6.6) 

For E >> N<E > = 103X0.5 GeV the exponential is dominant and leads 
to nggligib?e background. lhus a threshold jet energy in the 
range l-3 TeV is very reasonable. There thus remains a hope to 
reconstruct multijet systems provided only tine total mass of the 
system and subsystems is very large compared to, say, 3 TeV. Eiut 
that is, after all, the main reason to build such a hi& energy 
collider in the first place. 

VII. CONCLUDING COMMENTS 

Within the limitations of this study, as carried out by an 
inexperienced amateur, there is no evidence that this monster of a 
machine does not work, with luminosity adequate to do the physics 
it naturally addresses. Detection problems are demanding because 
of pileup, but should not be insurmountable. There are evident 
practical problems. 
a system problem. 

Not only is there a funding psoblem, but also 
Not one of the 2x10 cantankerous 

superconducting magnets 
fail. 

and their complex support systems can 
This question of quality control mi&t well be the most 

demanding technical problem of all. 

Various problems of this machine were 
participants 

addressed. by 
of the school. These included the question of 

disposal of synchrotron radiation (use warm "scrapers" located 
between magnet strings), beam abort systems (conventional methods 
seem to work), the electrostatic deflection system to keep p and f; 
bunches From colliding except in interaction regions, and 
detection problems associated with multiple interactions per bunch 
crossing. lhese latter two topics are included here in two 
supplements. 

A major omission in these lectures is an adequate discussion 
of single-beam instabilities. lhe reader is urged to consult the 
references in Appendix I For more information, in particular 
A. Chao (ref. A7, SLAC School), C. Pellegrini (ref. A7, Fermilab 
School), and A. Hofmann et.al. (ref. AQ, Erice School). 

We thank T. Ferbel for his skillful organization of this 
school, and the participants For help and criticism in the 
preparation of this material. We thank also L. Teng For helpful 
criticism. 
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APPENDICES 

I. Reference Material 

There is considerable material on high energy accelerators 
and storage rings, ranging from textbooks to monographs and 
lecture series, to published papers, and to preprints and internal 
laboratory memoranda. tlhe latter component often seems to be the 
dominant one!) I am not enough of a scholar to provide an 
authoritative bibliography, but shall simply list here a few which 
were used in preparation of these notes. This listing should 
provide the reader with an avenue into more detaled papers on 
specific topics. 

Al. 

A2. 

A3. 

A4. 

A5. 

A6. 

H. Bruck, 
(1966). A 

"CirCUlar Particle Accelerators," PUF, Paris 
good general reference. (Unfortunately the only 

REFERENCES 

copy I could locate was in French.) Translated by LASL 
LA-TR-72-10 Rev. 

M. Sands, SLAC report SLAC-121; also "Fllysics with 
Intersecting Storage Rings," ed. B. Touschek, Academic 
Press, N.Y. 1971. 'ihis is a splendid introduction to e+e- 
rings and especially problems of synchrotron radiation. 

E. J. N. Wilson, CERN 7'7-7, "Proton Synchrotron Accelerator 
Theory." CERN academic-training lectures; a very nice 
introduction. 

"Theoretical Aspects of the Behavior of Beams in 
Accelerators and Storage Rings,tl CERN 77-13. A quite 
comprehensive discussion of many topics at a Fairly advanced 
level. (This is the proceedings of an Erice school on 
accelerators.) 

Proceedings of the ICFA Workshops on Possibilities 
Limitations of Accelerators and Detectors. Tne first (1978) 
is a Fermilab report; the second (1979) a CERN report. lhese 
consider design problems of very big (e.g. 20 TeV) rings and 
are very useful source material for considering the 2020 
machine. 

"Nonlinear Dynamics and the Beam-Beam Interaction," AIP 
Conference Proceedings No. 57. This nicely explores the 
interface between accelerator design and 20th century 
nonlinear mechanics. 
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A7. V'physics of High Energy Particle Accelerators," AIP 
Conference Proceedings No. 87 and No. xxx, ed. R. Carrigan, 
R. Huson, and M. Month. This contains the proceedings of a 
1981 Fermilab Summer Schooi. A second school was held at 
SLAC in 1982; proceedings have not yet appeared. 

A8. "Techniques and Concepts of High Energy physics," ed. T. 
Ferbel (Plenum, New York, 1981). lhis is the 1980 NATO 
Summer Institute Proceedings, and contains lectures by M. 
Month on specialized topics including beam-beam interaction 
and single-beam instabilities. 
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APPENDIX II: Limerick to a lheoexperimentalist 

A well known theorist, Bjorken, 

Field theory his great claim to Fame; 

Did an experiment one day, 

Couldn't re-normalise away, 

And something just snapped in his brain. 

lhe result of this now must be 

We henceforth accept G-U-T; 

That theorists may change, 

To plumbers ain't strange, 

Especially at quadrillion eV. 

Robert J. Wilson 
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APPENDIX III. The Missing Supplement 

Regrettably the supplement mentioned in the text was unable 
to be completed. It kas meant to consist of two parts. me 
material For the first, on bunch avoidance using electrostatic 
separators, was worked out by Nikos Giokaris. me scheme is 
practical and appears to cause no great difficulty, althou& it 
imposes geometrical constraints on the lattice design. 

me material for the second part was provided by Geoffrey 
Taylor. It considers the interesting problem of detector design in 
the presence of multiple interactions per beam crossing. Par jet 
transverse momenta well in excess of 1 TeV, problems of pileup 
appear to be small. 

It was my intention to assist in editing and assembling this 
material together with the authors. But other pressures and 
commitments crashed in as the publication deadine approached, and 
there was no time available to properly complete the work. I 
deeply regret this Failure and apologize to Wikos and Geoffrey, 
and thank them for their hard work. 
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FIGURE CAPTIONS 

1. The "Livingston plot " showing growth of attained ems energy 
of hadron machines versus time. 

2. Typical betatron amplitude of a particle in a FODO lattice. 
Also shown is the amplitude function 

r 
6 (cf. Section III). 

3. Typical z-p phase-space population at various points in the 
FODO lattige (moving downstream): (a) At the center of an F 
(focussing) quadrupole, (b) Betwe en F and D (defocussing) 
quadrupoles, (c) At a D quadrupole, and (d) Between D and F 
quadrupoles. 

4. Closed orbit of an off-momentum particle in the FODO 
lattice. 

5. Structure of longitudinal phase space for a bunched beam (in 
absence of acceleration and/or synchrotron radiation). 

6. Structure of longitudinal phase space during acceleration 
(or in presence of synchrotron radiation). 

7. "Invariant torus" for particles of a given emittance 
traversing a oonstant fooussing structure. 

a. Phase-space positions of particles of a given emittance at 
various locations in a FODO lattice. lhe curves are loci of 
constant emittance. Compare Figs. 3 and 8. (a) F quad, (5) 
between F and D, (c) D quad, and (d) between D and F. 

9 Regions of Z-p phase space near a l/3-integer resonance: 
(a) on resona&e, and (b) just off resonance. 

10. Modification in presence of a zero-harmonic octupole 
component which produces stability at large amplitudes. 

11. Iterated maps in presence of large nonlinearity. From 
Reference A6, pp. 232 and 285. 

12. Tune diagram showing dangerous resonances. 

13. Simple dispersion suppressor. 

14. Schematic of optics in collision straight section. 

15. Mean transverse energy into one steradian at 90 
n 

VePSUS 

~collision energy. 
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Energy par ban 

Peak magnetic field 

Bending radius 

Naninal circlnnferen~ 

Diple magnet Length 

Nunker of diples 

Peak pladruple Gradient 

QuadrupleLength 

Cell length 

Betatron @ase advance/cell 

Betatron tune 
(horia3ntal~vertical) 

Transition energy 

Scaling Rule -- 

-E 

G 

-(E8/G)ln 

Length of plads pzr half-cell 

Nunker of cpads pr cell 10 

Total nun&r of wads 16,000 

Maximun a (E/BG)1'2 -12ockn 

Minimun -2ochn 

Naninal dispersion <n(s)> -G-l O.hn 

ManenUn ocmpaction rl W'W 4x1o-5 

2020 

500 T& 

10 T 

17okm 

2126OOm 

7nl 

170,000 

ZT/on . 

7m 

-7oOm 

9o" 

400 

-400 GeV 

-35m 

No. of long straight 
collision regions a 



Full length of long 
straight section 

B* at collision pint 

Free space around 
collision pint 

Maximum 8 at quads 

Rewlution freqency 

RF frequency 

Harmonic nunter 

RF wltage 

Synchrotron frequency 

MaximunAp 

Maximus Ap/p 

Bucket area 

Synchrotron radi.ation 
energy lass/turn 

Photon critical energy 

Longitudinal damping time 

Transverse dwping time 

Injection energy 

Transverse enittance 

at injection 

at peak energy* 

Ncminal rms beam size: 

at injection 

at peak energy* 

(E3/G)1’2 -3km 

-2cnn 

*lOOIll 

lOkIll 

25OHz 

SO(Mhz 

2x106 

XeV 

-1Hz 

+15cGeV 

3x1o-4 

"600 eV-set 

-E% 
-??B 

-E-$-2 

..E-lB-2 

3 GeV 

300 keV 

-10 min 

-20 min 

70 TeV 

E-l -300 urwwrad 

-40 !.m+prad 

(EBG)-1’4 

-0.2 mm 

-7op 
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Ncminal m~s pT-spread: 

at injection 

at pak energy* 

Lcngitudinal enittance 
at injection 

Rms manentun spread Ap* 

Rnts Ap/p at 500 GeV* 

Ibis lunch lerqth* 

Naninal rms beam size' 

Horizontal 

Vertical 

Emittan=+ 

Horizontal 

Vertical 

FZW manentun spread' 

- AP/P 

Rms bunch length' 

Rnti tern siz at mllisicn+ 

Horizontal 

Vertical 

(EBG) 1'4 

-1 

;1 

-1 

Optional tzms bean size (500TeV) 

Horizontal 

Vertical 

Optimal rms emittance 

Horizontal 

Vertical 

230 MeV 

*70 MeV 

2eV-set 

215 GeV 

+3x10-5 

f3 cm 

2Op? 

2P? 

23x10 -5 

+3m 

411 

0.51.1 

9m 

gou 

20~pmrad 

2Owm-!.muad 

‘i 



Optimal rmsmcmentlm 
spread ~P/P f6xlO -5 

Optimal rms bunchlength 

Optiiial rms team size 
at collision 

+ti 

Horizontal 4O!J 

Vertical m 

No. of ~6;) pzr tunch 5x1011 

No. of bxzhes 

Beam-bean tune 
shift/crossing 

Luninosity 

400 

.Ol 

1033an-2sec-1 

Energy stored in each bean 

RF per 

Refrigeration power 

2&J 

2oQG.i 

33? 

ZPrior to synchrotron damping. 
-At 500 TeV, dilute beam, after synchrotron dznping. 

%t'he paraneters for ICFA, TeU I, and FS were hard for me 
to assemble and verify. They have teen droppad for the 
table. 
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Figure 10 
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Figure 11 
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Figure 12 
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